Follow this step-by-step approach at your own pace, and teach yourself how to conduct a Machine and Process Capability Study. You will be improving processes right away!
Machine/Process Capability Study

- A Five Stage Methodology For Characterizing Processes -

Mario Perez-Wilson
President
Advanced Systems Consultants
"Machine/Process Capability Study"

For books, software, public seminars,
in-house training seminars, and
consulting services

please contacts:
Advanced Systems Consultants
Post Office Box 5257
Scottsdale, Arizona 85261
U.S.A.

Phone: (480) 423-0081

www.mpcps.com

MACHINE/PROCESS CAPABILITY STUDY

First Published 1989
Second Edition 1994
Third Edition 1999
Fourth Edition 2004
Fifth Edition 2012
Sixth Edition 2014

All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from Advanced Systems Consultants.

Current Printing (last digit)
20 19 18 17 16 15 14 13 12

PRINTED IN THE UNITED STATES OF AMERICA

ISBN 1-883237-10-6
Table of Contents

FOREWORD ... xv
PREFACE ... xvii

Section 1
Definition of a Process ... 1
Definition of Capability .. 1
Definition of Process Capability 1
Definition of Machine/Process Capability Study 3
The Capability of the Parts Makes the Capability of the Whole ... 6
Strategy for Implementing a Machine/Process Capability Study Program .. 7
Rank Order the Sub-processes and Machines 8
M/PCpS Teams ... 10
M/PCpS Coordinator .. 10
Important Roles of Team Members 11
Pareto Principle ... 17
Stages of the Machine/Process Capability Study Methodology 27

Section 2
1st Stage: Process Delineation - Machine Definition
Introduction .. 29
Types of Data .. 30
Scales of Measurement ... 31
Cause and Effect Diagrams 34
Brainstorming .. 37
Four Steps for Machine Definition 39

Section 3
1st Stage: Process Delineation - Sub-Process Definition
Four Steps for Sub-Process Definition 51

Section 4
2nd Stage: Metrology Characterization - Measurement Definition
Introduction .. 61
Four Steps for Measurement Definition 63
Table of Contents continuation

Section 5
2nd Stage: Metrology Characterization - Gauge Capability
Introduction .. 67
Accuracy ... 69
Precision ... 72
Repeatability and Reproducibility 80
Six Steps for Gauge Capability 81

Section 6
3rd Stage: Capability Determination - Machine Definition
Introduction .. 99
Frequency Distributions ... 100
Measures of Central Tendency 101
Measures of Spread ... 102
Measures of Shape ... 105
Percentiles .. 107
The Ogive Curve .. 109
Normal Distribution .. 110
Standard Normal Distribution 112
Machine and Process Potential, Cp 116
Machine and Process Capability, Cpk 118
Short and Long Term Capability Studies 121
Ten Steps for Machine Capability 127

Section 7
4th Stage: Optimization - Reduction of Variability
Introduction .. 181
Experimentation - An iterative process 183
Factorial Designs .. 186
Experimental Design Funnel 187
Multi-Vari Charts .. 188
Ten Steps for Reduction of Variability 191

Section 8
5th Stage: Control - Preventive Control
Introduction .. 217
Control Charts .. 218
PosiTrol Plans .. 235
Five Steps for Preventive Control 239
Table of Contents continuation

Section 9
Standard Worksheets and Forms ... 253

Section 10
Example
"Guggenheim" Wafer Back Sizing ... 272
Plasma Etch Process .. 283
Flowchart of the Machine/Process Capability Study
Methodology ... 307
Appendices ... 313
Six Sigma or + Six Sigma .. 314
Likert Scale for PWB Solder Deposition 316
Nonparametric Statistical Tests .. 317
Relationship Between the Range Average and Sigma 318
Charting the Range against the UCL for the Range 321
Transforming from the Normal Distribution to a Standard
 Normal Distribution .. 322
 Fitting a Continuous Curve .. 323
Possibilities of M/PCpS at the end of the Capability
 Determination Stage .. 324
Objective of an M/PCpS Study ... 325
Cumulative Normal Distribution Table 326
Unilateral Normal Distribution Table 327
Minitab Instructions for the Capability Determination Stage 329
References ... 339
Index .. 343
About the Author ... 351
Comments from Our Customers .. 352
Letters: Motorola - Six Sigma ... 354
Order Form .. 357
Foreword

In recent years, American industry has made some progress in product design through techniques such as the design of experiments. Products have been made more "robust" against "noise" and environmental factors through parameter design and tolerance design. Yet, the process that produces the product is often treated as a stepchild. Development engineers do not feel responsible for the process. They relegate that to the process engineer, who, in turn, is heavily dependent on the supplier of the equipment used in the process. And all of them use arbitrary process specifications, antiquated procedures and hit-and-miss experiences in determining process parameters. The result is confusion, finger-pointing, low yields and the high cost of poor quality.

A cooking analogy can be used to describe the chaos in production processes. The task is to bake a cake. But imagine the quality of the cake if the cook had no recipe, no knowledge of the ingredients or their respective quantities! Yet industry moves along blithely with little knowledge of which are the important process variables that must be tightly controlled and which are the unimportant variables where costs can be substantially reduced. In short, poor process characterization and optimization are of epidemic proportions in industry.

To this pall of darkness, Mario Perez-Wilson, with his book on "Machine/Process Capability Study," brings a beacon of light. He carefully orchestrates a step-by-step methodology--process delineation; metrology characterization; process capability determination; optimization; and control. It is a landmark book that fills a gaping void in manufacturing. He utilizes a series of powerful problem-solving tools, spanning different approaches to the design of experiments. He captures the techniques of repeatability and reproducibility in order to assure the accuracy and capability of instrumentation. He marshals the disciplines of statistical experimentation and evolutionary optimization. And he is able to weave these separate and independent strands into a robust cloth that can be used by the novice and the veteran, by the line worker and the professional, by individual contributors and managers.

American industry will do well to pay particular heed to Mario Perez-Wilson's "recipe" in its quest to restore its manufacturing leadership in the world.

Keki R. Bhote
Senior Corporate Consultant
Quality and Productivity Improvement
Motorola Inc.
Preface

The purpose of this book is to serve as a single source of reference to those individuals who are involved in the implementation of statistical methods (Statistical Process Control, and Design of Experiments) in manufacturing. It presents a standard methodology for conducting machine and process capability studies. The methodology has been designed to prove industry with a standard approach for studying processes, and enable them to produce within specifications.

The Machine/Process Capability Study methodology, M/PCpS, presents the steps necessary to achieve process capability in sequential order. It is divided into five progressive stages: 1) Process Delineation, 2) Metrology Characterization, 3) Capability Determination, 4) Optimization, and 5) Control. Prior to introducing each stage, necessary background information is presented. This information usually consists of problem solving tools and/or statistical techniques. Each stage is then thoroughly explained and broken down into further steps. Each step is then defined and described in detail using a "real world" manufacturing process example.

An attempt was made to illustrate the complete methodology using the same manufacturing process example. However, to simplify the explanation of certain steps a different manufacturing process was utilized. The manufacturing process operation selected to demonstrate the methodology is the Wafer Sizing operation done on silicon wafers in the semiconductor industry. Other areas of the methodology have been demonstrated using a Printed Wiring Board (PWB) wave soldering system, a fuze assembly operation, and an electronic component manufacturing process.

The methodology utilizes many techniques and problem solving tools that are usually covered independently. In the methodology, these tools and techniques have been incorporated in sequential order of execution, and integrated into one logical approach for optimizing manufacturing processes and machines. Some of the techniques are: Design of Experiments (Full Factorial Design and Fractional Factorial Designs), Analysis of Variance, Yates Algorithm, Pareto Diagrams, Concentration Diagrams, Ishikawa Diagrams, Control Chart, PosiTrol Plans, Pre-control, etc.

The book is divided into ten sections. The first section describes the author's derivation of the Machine/Process Capability Study methodology. It also suggests how the methodology should be implemented in a manufacturing environment. Sections two through eight present the five stages of the M/PCpS
methodology in order of execution. The basic format is an introduction and a
description of the tools and techniques necessary to understand the section,
followed by a step by step description of the M/PCpS stage, each with an
eexample. Within each section, the pages describing the tools and techniques are
characterized by an icon [] at the top right-hand corner of the page. The
pages describing the methodology have "M/PCpS" in its place. Section nine
presents all the standard worksheets (forms) used for guiding the user through
the methodology and for complete documentation of the study. Finally, section
ten contains a complete example of a M/PCpS study.

To the academic reviewers of this book, I must confess that this book is not for
you, but rather for the individuals (engineers, managers and practitioners) in the
manufacturing world struggling to find a method for reducing variation in their
processes.

It has been my intention to provide a standard methodology that industry could
adopt as an operating procedure for studying and optimizing manufacturing
processes. It is my personal belief (as my years of experience in applying this
methodology have proven to me) that this methodology, if followed thoroughly,
will inevitably reduce the major sources of processes variation, increase the
quality of your products, and speed up the successful optimization of your
manufacturing processes. The United States' competitive edge in manufacturing
is currently at a disadvantage against our Asian competitors. We are in an
economic war, and it is time to "buckle up", apply first gear, conduct smart
statistical experimentation and optimization, and win this economic war.

Mario Perez-Wilson
Kowloon, Hong Kong, December 10, 1988
The cumulative normal distribution table gives the area under the curve from minus infinity to the z-score or z value chosen.

Percent of product that falls below the USL = 45 comes from the Table:

0.83147
100 x 0.83147 = 83.147 %

Percent of product that falls outside the USL = 45 is equal to:

1 - 0.83147 = 0.16853
100 x 0.16853 = 16.853 %
Machine/Process Potential, (Cp)

The Cp is a process potential index that measures the potential of capability of a machine or process. The Cp is the ratio of the allowable spread over the actual spread. The allowable spread is the range or tolerance of the specification, and is calculated by subtracting the lower specification limit from the upper specification limit. The actual spread is the spread from data collected from the machine or process and is calculated by multiplying 6 times the standard deviation, S, of the data.

A high value of Cp does not guarantee that the process is capable of producing product within specification. Furthermore, the whole distribution of the process, might not overlap with the specification range. The process potential does not measure the location of the average of the actual spread with respect to the center (target) of the allowable spread, it only compares their widths. The capability index, Cpk, measures the degree of centering of the actual process spread with respect to the allowable spread.

The Cp may only be calculated when two sided specifications are available. Numerical properties such as addition and averages, cannot be applied to the Cp because it is a unitless index and would not yield meaningful information.

\[
Cp = \frac{\text{Allowable Spread}}{\text{Actual Spread}}
\]

Engineering Specification or what engineer judgment establishes as allowable for that machine or process.

The spread from the data collected from the machine or process.

What the customer WANTS.

What the customer GETS.

\[
\text{ALLOWABLE SPREAD} = 6 \times S \text{ where } S \text{ is based on a large sample size (Long term study)}
\]

\[
\text{ACTUAL SPREAD} = \left(\bar{x} - \text{LSL} \right) \text{ or } \left(\text{USL} - \bar{x} \right)
\]
Machine or Process Potential

Formula:

\[Cp = \frac{USL - LSL}{8 \times S} \]
(Short Term Study)

\[Cp = \frac{USL - LSL}{6 \times S} \]
(Long Term Study)

where,

\[S = \text{standard deviation of the actual process} \]
\[LSL = \text{lower specification limit} \]
\[USL = \text{upper specification limit}. \]

Actual Process Data:

Mean, \(\bar{X} \) : 34
Standard Deviation, \(S \) : 3.75

\[Cp = \frac{45 - 15}{6 \times 3.75} = \frac{30}{22.5} = 1.33 \]

Actual Process Data:

Mean, \(\bar{X} \) : 60
Standard Deviation, \(S \) : 3.75

\[Cp = \frac{45 - 15}{6 \times 3.75} = \frac{30}{22.5} = 1.33 \]

Defective units: 100%
Machine or Process Capability

Machine or Process Capability, (Cpk)

The Cpk is a machine or process capability index that measures the ability of a machine or process to produce product within specification. The Cpk is the ratio of the distance between the actual process average and the closest specification limit over three times the standard deviation of the actual process. The capability index measures the degree of centering of the actual process spread with respect to the allowable spread. When the actual process average is outside the specification limits, then the Cpk defaults to zero.

\[
Cpk = \left\{ \text{Smallest of: } \frac{\bar{X} - \text{LSL}}{3 \times S} ; \frac{\text{USL} - \bar{X}}{3 \times S} \right\}
\]

A machine or process is referred to as being capable when its Cpk has a minimum value of one, and process stability has been proven. A Cpk equal to one implies that at least 99.73% of the product is within specifications limits, provided that the process is stable. Stability of the process can be proven through the use of a control chart. Once the process data is plotted on a control chart, the process can be regarded as being stable only if it exhibits statistical control. Statistical control is exhibited when the points plotted do not extend beyond the upper and lower control limits, and also by the absence of non-random patterns or trends within the control limits.

The Cpk can be calculated for both single-sided or double-sided specifications. Numerical properties such as addition and averages cannot be applied to the Cpk because it is a unitless index and would not yield meaningful information.
Let's assume that a product characteristic has a specification of 30 ± 15. The target of the specification becomes 30 and the tolerance is equal to two times 15 or 30. Let's calculate C_{pk} for different distribution means and standard deviations.

In the example below, the sampling distribution is not centered with the target (T) of the specification. The standard deviation is small enough that if the distribution was centered, the process capability, C_{pk}, would be equal to the process potential, C_p.

In the next example, the sampling distribution is not centered with the target, T, of the specification. The standard deviation is very large and even if the distribution were centered, the process would still not be capable. The process potential is less than 1.0, which indicates that centering the distribution would not make the process capable. To make this process capable, the standard deviation has to be reduced.
Machine Capability

Interpretations of the Normal Probability Paper plots.

Capable Machine/Process

Normal Distributed (Symmetrical)

Negatively Skewed

Positively Skewed
Stage 3: Capability Determination

Platykurtic
(Kurtosis << 3.0)

Leptokurtic
(Kurtosis >> 3.0)

Non-Capable Machine/Process
Bimodal

Flat Distribution

Peaked Distribution

Bimodal Distribution
The Taguchi Orthogonal Array L27 (3^{13-11}) design.

<table>
<thead>
<tr>
<th>Run</th>
<th>1st Cutter Spin Speed</th>
<th>2nd Cutter Spin Speed</th>
<th>Interaction between A & B (Linear)</th>
<th>Interaction between A & B (Quadratic)</th>
<th>Rotational Speed of Holder</th>
<th>1st Cutter Polish Rate</th>
<th>2nd Cutter Polish Rate</th>
<th>Grinding Force</th>
<th>1st Cutter Abrasive Cor</th>
<th>2nd Cutter Abrasive Cor</th>
<th>1st Cutter Polish Time</th>
<th>2nd Cutter Polish Time</th>
<th>1st Cutter z Rate</th>
<th>2nd Cutter z Rate</th>
<th>1st Cutter Abrasive Cor</th>
<th>2nd Cutter Abrasive Cor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Level for each experimental factor in run # 27.
At the culmination of the stage of Control, the wafer thickness process capability index was Cpk=1.89 and its process potential index was Cp=1.99.

For wafer strength, the process potential index was further improved by experimenting with cutter grit sizes and water flow rates during grinding. The final experimental results lowered the number of cracks/wafer to an average of 0.769 and a standard deviation of 1.107; thus making the wafer very strong.
The specification limits were changed from 30 ± 15 cracks/wafer, to a lower specification limit of 0, and an upper specification limit of 10 cracks/wafer. The standard deviation was reduced from 8.42 to 1.107, far exceeding the ± Six Sigma goal performance capability. The "Guggenheim" wafer grinder achieved best-in-class status, and the wafer breakage yields were improved from 80.8% to 92.7%. An overall savings of $714,000 a year.

Wafer Strength Pre and Post Improvements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before Experimentation (Distribution #1)</th>
<th>After Experimentation (Distribution #2)</th>
<th>Final Results New Spec Limits (Distribution #3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{X})</td>
<td>0.769</td>
<td>47.86</td>
<td>0.769</td>
</tr>
<tr>
<td>S</td>
<td>1.10</td>
<td>30</td>
<td>1.10</td>
</tr>
<tr>
<td>Cp</td>
<td>1.51</td>
<td>45</td>
<td>1.51</td>
</tr>
</tbody>
</table>

The specification limits were changed from 30 ± 15 cracks/wafer, to a lower specification limit of 0, and an upper specification limit of 10 cracks/wafer. The standard deviation was reduced from 8.42 to 1.107, far exceeding the ± Six Sigma goal performance capability. The "Guggenheim" wafer grinder achieved best-in-class status, and the wafer breakage yields were improved from 80.8% to 92.7%. An overall savings of $714,000 a year.
MACHINE/PROCESS CAPABILITY STUDY

Program: Bond Pad Corrosion
Responsible Person: Plasma Etch M/PCpS Team

<table>
<thead>
<tr>
<th>MACHINE/PROCESS</th>
<th>RANK-ORDER: Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etch Rate</td>
<td>Total</td>
</tr>
<tr>
<td>Uniformity</td>
<td>Level of Independent</td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
</tr>
<tr>
<td>End Point Consistency</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>24 22 15 20 81</td>
</tr>
<tr>
<td>N_2</td>
<td>24 20 12 10 66</td>
</tr>
<tr>
<td>SF_6</td>
<td>22 22 4 10 58</td>
</tr>
<tr>
<td>CHF_3</td>
<td>20 18 9 8 54</td>
</tr>
<tr>
<td>T.S. Upper Electrode</td>
<td>7 5 7 19</td>
</tr>
<tr>
<td>T.S. Bottom Electrode</td>
<td>9 8 13 9 36</td>
</tr>
<tr>
<td>T.S. Chamber</td>
<td>12 8 4 12 36</td>
</tr>
<tr>
<td>P.S. Throttle Valve</td>
<td>19 13 3 19 54</td>
</tr>
<tr>
<td>P.S. Pump System</td>
<td>19 13 3 19 54</td>
</tr>
<tr>
<td>P.S. Transducer Accuracy</td>
<td>19 12 3 19 53</td>
</tr>
<tr>
<td>P.S. Chamber Vacuum Integ.</td>
<td>18 13 3 19 53</td>
</tr>
<tr>
<td>E.S. Detector</td>
<td>18 18 10 10 18</td>
</tr>
<tr>
<td>E.S. High Voltage</td>
<td>18 18 10 10 18</td>
</tr>
<tr>
<td>E.S. Wave Length</td>
<td>18 18 10 10 18</td>
</tr>
<tr>
<td>E.S. Gain</td>
<td>18 18 10 10 18</td>
</tr>
<tr>
<td>E.S. Window</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>E.S. Cleanliness</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>B.C.S. Clamping Spring</td>
<td>11 15 5 11 42</td>
</tr>
<tr>
<td>B.C.S. He Flow Pressure</td>
<td>9 12 4 9 34</td>
</tr>
<tr>
<td>B.C.S. Wafer Placement</td>
<td>2 10 1 2 15</td>
</tr>
<tr>
<td>B.C.S. Wafer Flatness</td>
<td>2 10 1 2 15</td>
</tr>
<tr>
<td>P.S. Matching Efficiency</td>
<td>21 10 12 21 64</td>
</tr>
<tr>
<td>P.S. Phase Splitter</td>
<td>20 10 12 21 63</td>
</tr>
<tr>
<td>P.S. RF Power</td>
<td>22 10 13 22 67</td>
</tr>
<tr>
<td>Gas Flow Consistency</td>
<td>20 14 15 20 69</td>
</tr>
<tr>
<td>Gap Parallelism</td>
<td>16 20 3 16 54</td>
</tr>
<tr>
<td>Gap Spacing Accuracy</td>
<td>16 20 4 10 50</td>
</tr>
<tr>
<td>Shower Head</td>
<td>13 18 3 8 42</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Manpower</td>
<td>17 4 2 1 24</td>
</tr>
<tr>
<td>Wafer Thickness</td>
<td>18 8 13 3 42</td>
</tr>
</tbody>
</table>

© 1994, Advanced Systems Consultants
Within Wafer Thickness Uniformity
(Edge to Center Thickness of Silicone Nitride from Metalization - from 30 Wafers' Average)

Slope = 462 Å

Within Wafer Thickness Uniformity
(Edge to Center Thickness after Plasma Etching - From 30 Wafers' Average)

Slope = 1,278 Å

© 1994, Advanced Systems Consultants
MACHINE/PROCESS CAPABILITY STUDY

Study # 012503
Date 5-20-95
Operation Etching
Equip # T-903
Page 25 of 26

Final Results after Characterization

After Characterization and Optimization

- $\bar{X} = 6268.2$
- $R = 230$
- $S = 50.24$
- $Cp = 1.56$
- $Cpk = 1.56$

Before Characterization and Optimization

- $\bar{X} = 6882.73$
- $R = 1209$
- $S = 389.32$
- $Cp = 0.22$
- $Cpk = 0.22$

© 1994, Advanced Systems Consultants
Appendix A
 + Six Sigma

Appendix B
 Likert Scale for PWB Solder Deposition

Appendix C
 Nonparametric Statistical Tests

Appendix D
 Relationship Between Average and Sigma

Appendix E
 Charting the Range in a GR&R Study

Appendix F
 Transforming a Normal Distribution to a Standard Normal Distribution

Appendix G
 Fitting a Continuous Curve

Appendix H
 Possibilities of M/PCpS After the Capability Determination Stage
 Objective of M/PCpS Studies

Appendix I
 Cumulative Normal Distribution Table
 Unilateral Normal Distribution Table

Appendix J
 Minitab Instructions for the Capability Determination Stage
Six Sigma or ± Six Sigma

Six Sigma is an optimized level of performance approaching zero-defects in a process producing a product, service or transaction. It indicates achievement and maintenance of world-class performance.

Motorola, on Thursday, January 15, 1987, defined Six Sigma as having plus or minus six sigmas (±6s) or standard deviations within specification limits. In other words, given a particular product characteristic, which has a design specification, that design specification has an upper specification limit, USL, and a lower specification limit, LSL, these two limits demarcated a design tolerance. Motorola held the design tolerance to be such, that it should allow to fit twelve (±6) sigmas or twice the process variation.

Theoretically, under the above stated condition, a process would have Cp=2, Cpk=2, in-process yield around 99.9999998%, and a defective rate below 0.002 parts-per-million (PPM). For all practical purposes, ± Six Sigma implies zero-defects.

What is the objective of ± Six Sigma? To reduce the process variation, such that twelve standard deviations will fit within specification limits, and to center the mean in the middle of the specification limits.

Six Sigma or plus or minus six sigma within specification limits.
Areas under Normal Curve

Sigma Level
(± xσ)

<table>
<thead>
<tr>
<th>± 1σ</th>
<th>± 2σ</th>
<th>± 3σ</th>
<th>± 4σ</th>
<th>± 4.5σ</th>
<th>± 5σ</th>
<th>± 6σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ One Sigma</td>
<td>~ Two Sigma</td>
<td>~ Three Sigma</td>
<td>~ Four Sigma</td>
<td>~ Four and a half Sigma</td>
<td>~ Five Sigma</td>
<td>~ Six Sigma</td>
</tr>
<tr>
<td>0.33</td>
<td>0.67</td>
<td>1.0</td>
<td>1.33</td>
<td>1.50</td>
<td>1.67</td>
<td>2.0</td>
</tr>
<tr>
<td>0.33</td>
<td>0.67</td>
<td>1.0</td>
<td>1.33</td>
<td>1.50</td>
<td>1.67</td>
<td>2.0</td>
</tr>
<tr>
<td>317,320</td>
<td>45,500</td>
<td>2,700</td>
<td>63.5</td>
<td>6.9</td>
<td>0.6</td>
<td>0.002</td>
</tr>
</tbody>
</table>

[Yields, sigmas, Cp, Cpk and PPM levels when ± sigmas coincide with specification limits.]
References

American National Standards Institute, (1985), Control Chart Method of Controlling Quality During Production, ANSI Z1.3-1985 (ASQC B3-1985)

Index

A
A2 Factor, 165
Accuracy, 67
Actual Spread, 116
Allowable Spread, 116
Attribute Data, 30
Attributes Measurement, 219
Average, 101
Average:
 Chart, 168
 Range, 90

B
Best Fit Line, 149
Between-Piece Variation, 189
Between-Operator Variation, 78
Bimodal Distribution, 153
Blank Forms and Worksheets, 253
Brainstorming, 37

C
c Charts, 219
C&E, 29
C&E Cross-Reference
 Table, 45-49, 58-9, 134-5, 195-6, 198, 273-4, 285, 296
CAL, 217
Capability, 1
Capability:
 Determination, 99
 Index, 99, 171
Cause and Effect (C&E), 29
Cause and Effect Diagram, 34-6
Cell Width, 100
Center Line (CL), 168

Centiles, 107
Charts:
 Average, 168
 c, 219, 233
 Control, 167, 218
 Individuals, 220-233
 MR, 220-233
 Multi-vari, 188
 np, 219, 233
 p, 219, 233
 Pareto, 17
 Shewhart, 217
 u, 219, 233
 X & R, 161, 218, 233
Concentration Diagrams, 194
Continuous Data, 30
Control Chart, 167, 218
Control Chart Flowchart, 233
Control Limits, 161
Corrective Action Logs, 217
Cp, 99, 116, 126, 171, 325
Cpk, 99, 116, 126, 171, 325
Cumulative Frequency, 107-9, 145
Cumulative Frequency Distribution, 109
Cumulative Normal Distribution, 113, 326
Customer-Supplier Variation, 79
Cyclical Variation, 188, 189

D
D3 Factor, 165
D4 Factor, 165
Data:
 Attribute, 30
 Coded, 140
Index Continued

Continuous, 30
Discrete, 30
Interval, 33
Measurement, 30
Nominal, 31
Ordinal, 32
Qualitative, 30
Quantitative, 30
Ratio, 33
Variable, 30
Delineation, Process, 29
DeMoivre, Abraham, 110
Dependent Variables, 42
Descriptive Statistics, 99, 127, 155, 158
Design Matrix, 184-5
Design of Experiments, 181
Diagrams:
 C&E, 34
 Concentration, 194
 Fishbone, 34
 Pareto, 3-8, 17-26
Discrete Data, 30
Dissectible Characteristics, 53-4
Distributions:
 Bimodal, 153
 Cumulative Frequency, 109
 Cumulative Normal, 113
 Flat, 153
 Frequency, 100
 Gaussian, 110
 Normal, 110
 Peaked, 153
 Standard Normal, 112
 u, 112
DOE, 181
E
Edge Force Variable Pressure Test, 66
Experimental Design Funnel, 187
Experimental Factors, 203
Experimentation, 183
F
Factorial Designs, 186
Factors, 165, 184
Factors:
 A2, 165
 D3, 165
 D4, 165
 Experimental, 203
Family of Variation, 188
Fishbone Diagram, 34
Flat Distribution, 153
Flowcharts:
 Control Charts, 233
 M/PCpS, 307-11
Forms:
 Blank, 253
 Gauge Short Method Study, 93, 257
 GR&R Data Collection Sheet, 94, 98, 258
 Pareto Diagram, 25, 265
 Standard, 253
Frequency Distribution, 100
Frequency Histogram, 100
Frequency, Cumulative, 145
Full-Factorial Designs, 186, 201
Index Continued

Functional Characteristics, 29, 39-41, 44
Fuze Example, 196-7, 200-1, 205-6, 208, 210-1, 213-4

G
Gauge:
Accuracy, 67
Capability, 67, 81
Error (GRR), 91-2
Precision, 67
Variability, 97
Gauss, Karl, 110
Gaussian Distribution, 110
Goodness of Fit, 142
GR&R, 67
Grinding Component System, 38-9, 44
GRR, 91
Guggenheim Wafer Sizing

H
Hypothesis, 183, 196

I
Inaccuracy, 70
Independent Variables, 5, 39, 42-50, 184
Index:
Capability, 99, 171
Process Potential, 116, 173
Interval Data, 33
Ishikawa Diagram, 34
Ishikawa, Kauro, 34
Iterative Process, 183

K
Kurtosis, 106, 157

L
Laplace, Pierre Simon, 110
LCL, 165
Leptokurtic, 106, 153
Levels, 184
Likert Scales, 61, 316
Limits, Control, 161
Logs:
Corrective Action (CAL), 217
PostTrol, 217, 235, 238, 242-3
Long Method Study, 82, 84, 86, 94
Long-Term Capability Study, 124
Lower Control Limit (LCL), 165
Lower Specification Limit, 116

M
M/PCpS, 3
M/PCpS:
Coordinator, 10
Data Collection Sheet, 138
Flowchart, 307-11
Stages, 27
Teams, 10
Machine Capability, 99
Machine Definition, 39, 40, 50
Machine/Process:
Capability, 118
Capability Study (M/PCpS), 3
Potential, 116
Index Continued

Material Variation, 79
Mean, 156, 159
Mean Rank Plot Points, 147
Measurement:
 Attributes, 219
 Data, 30
 Definition, 61
 Scale, 33
Measures:
 of Central Tendency, 156
 of Shape, 156
 of Variability, 156
Median, 101
Mesokurtic, 106
Metrology Characterization, 61
Minitab, 329-38
Mode, 101
Moment About the Mean, 156-7
Multi-vari Chart, 188

N
Nominal Data, 31
Nondissectible Characteristics, 53-4
Normal Distribution, 110
Normal Probability:
 Paper, 142
 Paper, Interpretations, 152
 Table, 177
Normality Determination, 142
np Charts, 219

O
OCAP, 217
Ogive Curve, 109
Operator Variability, 97
Optimization, 181, 191
Order of Production, 140
Ordinal Data, 32
Out-of-Control Action Plans, 217
Out-of-Control Condition, 168

P
p Charts, 219
Parameter Standard Deviation, 125
Pareto:
 Chart, 17
 Diagram, 3-8, 17-26
 Principle, 17
Pareto, V. 17
Peaked Distribution, 153
Percent-Out-of-Specification, 178
Platykurtic, 106, 153
Point of Interest, 112
Positional Variation, 188
Positive Control, 235
PosiTrol, 235
PosiTrol:
 Logs, 217, 235, 238, 243
 Plans, 217, 235-6, 281, 306, 325
 Precision, 67, 72, 318
Preventive Control, 217, 239, 248
Process:
 Capability, 1, 118
 Delineation, 29
 Potential Index (Cp), 116, 173

Q
Qualitative Data, 30
Page: 347

Index Continued

Quantitative Data, 30
Quartiles, 107

R
R-Bar, 164
Range, 102, 156, 321
Range, Average, 90, 318
Ratio Data, 33
Recalibration, 70, 73
Reduction:
 of Variability, 181, 191
 of Variance, 181
 of Variation, 192
Repeatability, 67, 97
Replicated Measurements, 73
Reproducibility, 67, 97
Response Variables, 42
Rinse and Drying System, 41, 44

S
S-shaped Curve, 109
Sample Size, 100, 121, 125, 140
Sample Standard Deviation, 125
Sampling, 140
Scale of Measurements, 31-3
Seder, Leonard, 188
Shewhart Control Charts, 217
Shewhart, Walter, 218
Short Method Study, 82-3, 90
Short-Term Capability Study, 121
Six Sigma, 180, 249, 251, 272, 283, 314-5
Skewness, 105, 152, 156
Sources of Variation, 75
SME, 10, 13, 15, 129
Specifications, 61, 63

Spread:
Actual, 116
Allowable, 116
Standard:
 Deviation, 102, 156, 180
 Forms and Worksheets, 253
 Normal Distribution, 112
 Scores, 112
State of Statistical Control, 160
Statistical Methods Engineer, 10, 13, 15, 129
Statistically Designed Experiments (DOE), 181
Study Number, 129
Sub-Grouping Size, 140
Sub-Process, 7, 8
Sub-Process:
 Characteristics, 52
 Definition, 29, 51

T
Tables:
 C&E Cross-Reference, 45, 195
 Cumulative Normal Distribution, 178
 Normal Probability, 177
Taguchi Orthogonal Array, 204
TCM, 217
Team:
 Chairman, 11-2, 15
 Champion, 11, 15
 Coordinator, 10, 15
 Facilitator, 13, 15
 Leader, 9, 12, 15
 Member, 9, 10, 13-5
 Scribe, 12, 15
Index Continued

Temporal Variation, 188-9
Test Equipment Variation, 88
Test of Unnaturalness, 168
Theories, 197
Tolerances, 61, 65
Total Control Methodology (TCM), 217, 235
Total Variability, 97
Treatment Combination, 185
Trivial Many Variables, 5, 7, 17

Operator, 97
Positional, 188
Reduction, 181, 191-2
Sources, 75
Temporal, 188-9
Test Equipment, 78
Total, 97
Within-Operator, 75
Within-Piece, 188
Vital Few Variables, 5, 7, 17, 325

U
u Charts, 219, 233
u Distribution, 112
UCL, 165
Unilateral Normal Distribution Table, 327-8
Upper Control Limit (UCL), 165
Upper Specification Limit, 116

W
u Charts, 219, 233
u Distribution, 112
UCL, 165
Unilateral Normal Distribution Table, 327-8
Upper Control Limit (UCL), 165
Upper Specification Limit, 116

V
Validation, 213
Variable Data, 30
Variables:
 Dependent, 42
 Independent, 5, 44-7, 184
 Response, 42
 Trivial Many, 5, 7, 17
 Vital Few, 5, 7, 17
Variation:
 Between-Piece, 189
 Between-Operator, 78
 Cyclical, 188-9
 Family of, 188
 Material, 79

X
X & R Chart, 161
X & R Chart Worksheet, 161
X-Bar, 163
X-Double Bar, 164

Z
Z Scores, 112, 174
Z Value, 113, 174
About the Author

Mr. Perez-Wilson has over 23 years of industrial experience in engineering, quality and process improvement and has served at the executive level as Corporate Vice President of Quality for Flextronics International. He holds a B.S. degree in Industrial Engineering from the University of Arizona and Global Leadership from the Thunderbird School of Global Management. He was awarded the "Da N To Tsu" (Japanese for "Best of the Best") award from the Rochester Institute of Technology in the QED 90 Symposium.

One of the original architects of Six Sigma, he served as a Division Statistical Methods Engineering Manager at Motorola. During his tenure, he institutionalized and standardized the application of statistical methods in Motorola's worldwide manufacturing, production and engineering operations. His M/PCpS™ Methodology for characterizing processes has received global recognition and has become the standard in the achievement of Six Sigma.

Mr. Perez-Wilson has conducted seminars for over 18,000 individuals in Brazil, Belgium, People’s Republic of China, Germany, Hong Kong, India, Japan, Korea, Malaysia, Mexico, Philippines, Singapore, Sweden, Taiwan, and the United States, and is currently listed in The International Who's Who in Quality.

Comments From Our Customers

"Good, practical approach to tackling difficult manufacturing problems. Good class notes, and straightforward, concise approach."

Stephen V. Crowder
Senior Member Technical Staff
Sandia National Labs

"The industry would do very well if people and companies would make a deep commitment to the M/PCpS methodology."

Pat Friend
Sales Engineer
Panasonic Factory Automation

"Great format. Simplistic approach from start to finish of a complex problem - Machine/Process Capability. Good explanation of not only how but with capability studies done in real life. Both theoretical and practical approaches in one. A class that all production, engineering and managers should take."

John Reitter
Thin Films Engineering Supervisor
LSI Logic Corporation

"The real genius of the Machine/Process Capability Study course is that it ties together and organizes all the tools for process improvement. I've taken many courses on S.P.C. and process improvement that have presented one piece of the puzzle, but none of the courses have put it all together as well as what Mario does in the Machine/Process Capability course. This is by far the best training course I have taken."

Brian Decker
Senior Quality Engineer
Martin Marietta

"M/PCpS provided an outstanding and integrated overview of practical statistical methods and a clear direction for applying the methodologies to foster a 'take control' approach in manufacturing. Education in their methods and actual application of them is now critical for American companies to 'close the gap'."

Scott P. Gucciardi
QA Engineer
Welch Allyn Corp.

"The most comprehensive methodology I have seen to date for people who are serious about improving machine/process capabilities and who are willing to work at it without looking for the proverbial short term windfall."

John Toto
Director, Quality Assurance
Semi-Alloys

"Excellent material and presentation on Machine/Process Capability. Instructor has excellent working knowledge of material."

Merv Dunn
Vice President Total Quality
Arvin Industries

"Your book is one of the easiest and useful ones I have ever seen. With your presentations and book people are gaining the knowledge to do things right from the very beginning (knowledge so much needed in the American Companies)."

Ana Ley
Etch Engineer
LSI Logic Corporation

"I have taken classes with Deming and Montgomery but this class was by far the best. Mario's approach is very simple and practical. I look forward to taking further classes with him."

David Butler
Director of Package Operations
Olin Interconnect

"An extremely structured and step-by-step methodology - very clear and simplified. A superb book to have for application as well as reference. I strongly recommend all personnel involved in production or manufacturing at all levels to attend this seminar if they are really serious about improving their product quality."

Norman Sim Boon Heng
SPC Analyst
Sundstrand Pacific (Atg) P.L.
"M/PCpS methodology is an extremely well planned, step by step course on 'how to' design, plan and complete Machine/Process Capability Studies. Most seminars that I have attended are predominately theory with very little applications. The instructor's experience and knowledge was excellent and made the seminar extremely enjoyable. Probably the BEST seminar I have ever attended - approximately ten in the last three years."

Jim Angel
Director Manufacturing Quality
Arvin NAA

"Your methodology is concise and complete. You've made a challenging subject very easy. There are no more excuses!"

Don Wright
Statistical Methods Engineer
Motorola, Inc.

"A concise and lively presentation of a set of fundamental tools and a simple application of their use to control processes."

T.A. Wiley
Quality Engineering Manager
Allied Signal Inc. Aerospace

"Mario takes a no-nonsense approach to provide designers and manufacturers with what they need to know and use M/PCpS."

W. David Williams
Quality Assurance Engineering Manager
Sandia National Labs

"This is a very good course toward 6 Sigma quality. It is a "life statistics", I encourage all manufacturing engineers to attend this class."

Tony C. R. Tsai
R & QA Manager
Motorola Electronics, Taiwan

"A very systematic step-by-step approach to understand the behavior of a manufacturing process. This methodology should be made known to all manufacturing operations."

Nakkina VRK
Process/IE Task Leader
Motorola (P) Ltd.

"M/PCpS, ... methodology is vital for U.S. to regain status and market share in world economy. This, together with concurrent engineering has potential of reducing many problems of national scope."

R.J. Tockey
MTS Division Supervisor
Sandia National Labs

"Mario Perez-Wilson brings complex manufacturing techniques and tools and outlines a simple methodology that engineers can use in their day to day activities to characterize, improve and control both simple and complex manufacturing steps. This methodology can help in the path of continuous quality improvement and in becoming a 'total quality' organization."

Divyesh Shah
Process & Product Engineering Manager
Lucas Nova Sensor

"Step by step book clearly moves you through the capability study process. Format is well documented throughout the book."

Scott Schiefer
Supplier Engineer
Western Digital

"The course goes to the heart of process improvement. This methodology is as complete as I have seen."

James A. Schue
Senior SPC Specialist
Zimmer, Inc

"The Methodology is very well structured and planned. The tools I learned are very powerful!"

Carlos A. Pinheiro
Site Coordinator (Brazil)
Multek/ Flextronics

"...Mario Perez-Wilson has significantly added value by organizing these techniques into a workable methodology and demonstration how it can be applied to produce the desired results."

George Melchiorlsen
Quality Engineer
Hewlett Packard
TO: Carlos Genardini (RFH920)
FR: Scott Shumway (R75780)
DA: 26 May 88 at 15:29:54
CC: Gordon Chilton (RLWX10)
 Tommy George (RJNN10)
 Jim Norling (RF3500)
RE: SSUP DIVISION SIX SIGMA ROADMAP AND GOALS

I HAVE JUST COMPLETED A REVIEW OF YOUR DIVISION’S SIX SIGMA ROADMAP AND SUPPORTING DETAILED ACTION PLANS AND GOALS — AN OUTSTANDING PACKAGE. YOUR DIVISION, WITH MARIO PEREZ-WILSON’S EFFORTS IN COORDINATING THE TASK, IS TRULY IMPLEMENTING WHAT WE ARE EXPECTING OF ALL DIVISIONS IN THE SECTOR. THAT IS: APPLICATION OF THE SIX SIGMA ROADMAP AS IT APPLIES AT THE DIVISION LEVEL, GENERATION OF THE SPECIFIC ACTION PLANS AND GOALS TO SUPPORT THE STATED OBJECTIVES AND RATES OF IMPROVEMENT, AND INCORPORATION OF THESE INTO THE DIVISION FIVE YEAR PLANS.

THANKS FOR YOUR LEADERSHIP IN OUR SPS QUALITY IMPROVEMENT PROCESS.
SCOTT
ECM

Carlos,
Thanks — good job!

Jan N.
MOTOROLA INC.

SEMICONDUCTOR PRODUCTS SECTOR
INTER-OFFICE CORRESPONDENCE

Date: October 1, 1990

To: Paul Alonas Theresa Maudie
 Bob Anger Theresa Monroe
 Rhea Benson Terry Quah
 John Bliss Ruth Ruiz
 John Bourn Nick Schiefer
 Rick Davis Brooks Scofield
 Mike Finecey Ora Smith
 Bill Grant Ray Sura
 Sid Griest Bob Tucker
 Mark Gabrielle Art Velanie
 M. K. Hong Dave Vowles
 Henry Leung Jack Walker

From: Carlos Genardini Phone: 244-4573 Mail Drop: Z208

cc: Jerry Baumann Sandy Johnson
 Gary Beaudin Tom Marchetti
 Kelvin Blair Mario Perez-Wilson
 Jim Cryer Dave Stevenson
 Jim Fogle John Trice
 Dave Gilbert Dave Wise

SUBJECT: Machine Process Capability Studies
 A Roadmap to Success

Several of you have completed, or are in the process of completing, work on Machine Process Capability Studies (MPCS). This proven methodology has been accepted by this Division as its approach to Six Sigma engineering of our processes and products. There are other tools that may be added to accelerate our level of accomplishment; however, the fundamental base is this methodology. I expect you to complete the work currently identified, and immediately proceed to identify the next field of study by establishing a new pareto of problems or barriers. Emphasis is to be placed on applying our engineering resources to the area of highest need. During the November Operations Review, I expect to have your management present what you have selected, the timing involved and the resources needed.

Thank you.

Carlos Genardini
Date: 6 February 1990 From: Dick Bond
To: Bob Stuart Phone: 244-3633 M/O Z308
Gary Thulstedal
Mario Perez Wilson
cc: Carlos Genardini
Don Guthrie
Tim Jones
Paul White
Gordon Chilton

Subj: Allied Signal Customer Visit Presentations on 5 February 1990

Thank you, gentlemen, for your very professional and informative presentations to the Allied Signal management team. The material you presented really helped them get a feel for how we are using SPC and applying our quality improvement principles in the factory to achieve Six Sigma.

Another job well done by three guys who are not only recognized authorities in your respective areas, but who also exhibit a level of confidence and enthusiasm which confirms our commitment to continuous improvement and Total Customer Satisfaction.

Thanks again.

Dick Bond

DB00590:j
Order Form

☐ Machine/Process Capability Study - A Five-Stage Methodology for Characterizing Process

☐ Gauge R&R Studies - For Destructive and Non-destructive Testing

☐ Multi-Vari Chart and Analysis - A Pre-Experimentation Technique

☐ Positrol Plans and Logs

☐ Six Sigma - Understanding the Concept, Implications and Challenges

Quantity Discount: Call 480-423-0081.

To order online visit website: www.mpcps.com

Order Form

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Total Amount is US$</th>
</tr>
</thead>
</table>

Customer Information

Name:

Title:

Company:

Address:

City: State: Zip:

Phone: Fax:

Email:

Payment Method

☐ Check Enclosed ☐ VISA ☐ MasterCard ☐ AMEX

Credit Card#: Exp. Date: